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Abstract A study covering some aspects of the Einstein–Rosen metric is presented. The

electric and magnetic parts of the Weyl tensor are calculated. It is shown that there are no

purely magnetic E-R spacetimes, and also that a purely electric E-R spacetime is necessarily

static. The geodesics equations are found and circular ones are analyzed in detail. The super-

Poynting and the “Lagrangian” Poynting vectors are calculated and their expressions are

found for two specific examples. It is shown that for a pulse-type solution, both expressions

describe an inward radially directed flow of energy, far behind the wave front. The physical

significance of such an effect is discussed.
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1 Introduction

Einstein–Rosen (E-R) spacetime [1] has attracted the attention of researchers for many years
(see [2–12] and references therein). Its interest may be understood by recalling that E-R
represents the simplest example of a spacetime describing outgoing gravitational waves.

It is our purpose in this work to study some aspects of the E-R spacetime which have not
been considered until now, and which may shed some light on the nature of such a physically
meaningful spacetime.

Particular attention deserves the question of whether or not cylindrical gravitational
waves have energy and momentum. Indeed, this problem has been investigated by many
authors (see [13–16] and references therein) using different energy-momentum pseudoten-
sors. However such a practice has been questioned by many physicists, for the obvious
reason that those objects are not tensors (see [17]). Fortunately though, we have available
a tensor quantity which allows to define a covariant (super)-energy density and a (super)-
Poynting vector, namely the Bel–Robinson tensor [18–20]. We shall study the energetics of
E-R spacetime with the help of these quantities.

With this goal in mind, we shall first calculate the electric Eαβ and magnetic Hαβ parts
of Weyl tensor, as well as the two invariants obtained from them, for the Einstein–Rosen
metric. These geometric objects have been under discussion for many years (see [18–38]
and references therein). Not only because of the eventual relationship of the magnetic part
of the Weyl tensor with rotation [21, 28], but also because of its link with gravitational
radiation [18–20, 24, 27, 29–31, 39].

From the expressions obtained for the above objects, it follows (although the presented
proof is somehow restricted) that the vanishing of the magnetic part implies that the space-
time is static, whereas the vanishing of the electric part of the Weyl tensor is shown to imply
that the spacetime is Minkowski, in agreement with the fact that purely magnetic vacuum
space-times do no exist [25, 26, 28, 36–38].

Next we obtain the geodesic equations for a test particle in an E-R spacetime. We analyze
the circular motion and compare the behavior of the test particle in the static case with
respect to its behavior in two (non-static) solutions of the E-R family, namely: a pulse-type
solution [12, 40] and the Kramer solution [41] (both in a static background).

The motivation for doing so become clear when the resulting differences (with respect to
the static situation) are analyzed and interpreted with the help of the expression of the radial
component of the super-Poynting vector [42], and the Poynting (pseudo)-vector defined by
Stephani [43].

In the first example (pulse-type solution) the angular velocity (far behind the front) is
smaller than in the static case, this difference decreases asymptotically as the system gets
back to the static situation. The physical interpretation of this result will be given in terms
of the energetics of the system (see the last section).

In the case of the Kramer solution (in a static background), the time average of the tan-
gential velocity of the particle is greater than in the static case. This suggests an increasing
of the gravitational mass of the source, which might be related to an inward radially directed
flow of energy. However, the time average of the Stephani vector vanishes, and, unfortu-
nately, it was impossible to evaluate the time average of the super-Poynting vector, even
with the help of a computer, although it seems that such an average is different from zero.
An alternative interpretation, not involving an inward flux of energy, is also presented.

At this point it is worth mentioning that in a general time-dependent E-R spacetime,
specific constraints have to be satisfied, for circular geodesics to exist (see Sect. 5.1 be-
low). Accordingly, in the two examples examined here, we shall define the conditions under
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which, circular geodesics do in fact exist. Of course all the discussion will be carried on,
upon satisfaction of the above mentioned conditions. Also it is worth stressing that both
solutions considered here are defined in a static background.

Thus, in the case of the pulse (in a static background) we shall see that conditions for
the existence of circular orbits are satisfied, behind the pulse, very far from the front (in
Sect. 5.1 we specify what we mean by “very far”) where the energy flux (as defined by the
super-Poynting or the Stephani vector) is negative (inward).

It is worth noticing that this last result is not in contradiction with the fact that the rate
of change of C-energy is shown to be negative in [5], since that proof is only valid for large
values of r , where in fact the radial component of, both, the super-Poynting and the Stephani
vectors, are positive (see Sect. 6).

In the case of the Kramer spacetime (in a static background), conditions for the existence
of circular geodesics are satisfied only for the time average of the metric.

2 The Einstein–Rosen metric and Its Electric and Magnetic Weyl Tensor

The line element reads

ds2 = −e2γ−2ψ(dt2 − dr2) + e2ψdz2 + r2e−2ψdφ2 (1)

where ψ = ψ(t, r) and γ = γ (t, r) satisfy the Einstein equations:

ψtt − ψrr − ψr

r
= 0, (2)

γt = 2rψrψt , (3)

γr = r(ψ2
r + ψ2

t ) (4)

where indexes stand for differentiation with respect to t and r .
Now, for an observer at rest in the frame of (1), the four-velocity vector has components

uα = (eψ−γ ,0,0,0) (5)

and it is obvious that for such a congruence of observers the vorticity ωαβ vanishes.

2.1 The Electric and Magnetic Parts of Weyl Tensor

The electric and magnetic parts of Weyl tensor, Eαβ and Hαβ , respectively, are formed from
the Weyl tensor Cαβγ δ and its dual C̃αβγ δ by contraction with the four-velocity vector given
by (5):

Eαβ = Cαγβδu
γ uδ, (6)

Hαβ = C̃αγβδu
γ uδ = 1

2
εαγ εδC

εδ
βρu

γ uρ, εαβγ δ ≡ √−gηαβγ δ (7)

where ηαβγ δ = +1 for α,β, γ, δ in even order, −1 for α,β, γ, δ in odd order and 0 otherwise.
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We have calculated the magnetic and electric part using GRTensor. Thus, one has for the
components of the magnetic Weyl tensor:

H23 = H32 = re2(ψ−γ )ψt

[
−3ψr − ψtr

ψt

+ r(ψ2
t + 3ψ2

r )

]
(8)

and the rest of the components being zero.
Regarding the electric part, one gets:

E11 = ψ2
t − ψ2

r + 1

r
ψr, (9)

E22 = e(4ψ−2γ )

[
−2ψ2

t − ψ2
r − ψrr − ψr

r
+ rψr(3ψ2

t + ψ2
r )

]
, (10)

E33 = r2e−2γ [ψrr − rψr(3ψ2
t + ψ2

r ) + ψ2
t + 2ψ2

r ]. (11)

Notice, however, that these components are not all independent, since they satisfy the
relation

E22e
2γ−4ψ + E33

r2
e2γ = −E11. (12)

The two invariants

Q = Ha
b Eb

a , I = Ea
bEb

a − Ha
b Hb

a

can now be easily computed to give:

Q = 0, (13)

I = − 2

r2
e4(ψ−γ ){(ψt − ψr)

3(ψt + ψr)
3r4

+ r3[−2ψtψtr (3ψ2
r + ψ2

t ) + 3ψ5
r + (2ψrr − 6ψ2

t )ψ3
r + 3ψrψ

2
t (ψ2

t + 2ψrr)]
+ r2[ψ2

tr + 6ψtrψtψr − 2ψ4
r + 9(ψ2

t − 3ψrr)ψ
2
r − ψ2

rr − 3ψ2
t (ψ2

t + ψrr)]
− rψr(3ψ2

t + ψrr) − ψ2
r }. (14)

3 Purely Magnetic Solutions (PMS)

Let us now see that there exist no purely magnetic solutions, i.e. solutions satisfying
Eαβ = 0, in agreement with the known fact that purely magnetic vacua with a non-rotating
congruence are flat indeed.

From (9–11) one obtains

6ψ2
r + ψrr − ψr

r
− 4rψ3

r = 0 (15)
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whose first general integral is

ψr = 1

2r
± 1

2r
√

1 − 4r2c
(16)

with c an arbitrary function of time, but since the range of r extends to infinity, it turns out
that c = 0.

Thus, either ψr = 0 which implies Minkowski, or

ψ = ln r + β (17)

where β is an arbitrary function of time.
However, from E11 = 0 and (17) it follows that β is a constant, then implying that ψt = 0

and hence Hαβ = 0, which produces a Minkowski spacetime. Accordingly, we conclude that,
as expected, there are no PMS Einstein–Rosen waves.

4 Purely Electric Solutions (PES)

Let us now see if there exist solutions satisfying the condition Hαβ = 0.
It is clear from (8) that ψt = 0 satisfies the condition Hαβ = 0. The question is whether

or not there exist solutions with ψt �= 0 also satisfying Hαβ = 0. We shall see that this is not
the case.

Indeed, the general form of ψ , satisfying the wave equation (2) (see [2, 44]), with the
outgoing wave condition (i.e. no inward traveling waves), is

ψ = Re
∫ ∞

0
A(ω)e−iωtH

(1)

0 (ωr)dω (18)

where H
(1)

0 (ωr) is the Hankel function of the first kind. Then it follows

ψt = Re
∫ ∞

0
−iωA(ω)e−iωtH

(1)

0 (ωr)dω, (19)

ψr = Re
∫ ∞

0
−ωA(ω)e−iωtH

(1)

1 (ωr)dω (20)

and

ψtr = Re
∫ ∞

0
iω2A(ω)eiωtH

(1)

1 (ωr)dω (21)

where it has been used the fact that [45]

d

dz
[z−νH (p)

ν (z)] = −z−νH
(p)

ν+1(z). (22)

Next, let us consider the low frequency regime (ω � 1
r
). From the fact that ψ is always

finite and
∫ ∞

0 xnH
(1)

0 (x)dx converges only for n > −1, it follows that as ω → 0, A(ω) ∼ ωn

with n > −1. This implies that the leading terms in low-frequency (ω � 1
r
) contributions to

ψt , ψr and ψtr are

ψt

(
ω � 1

r

)
∼ ψr

(
ω � 1

r

)
∼ 1

r2+n
(23)
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and

ψtr

(
ω � 1

r

)
∼ 1

r3+n
. (24)

From the above it is clear that the leading contribution in (8), in the low frequency regime,
comes from the term ψtr , therefore the condition Hαβ = 0 would imply ψtr = 0. Since this
is clearly incompatible with the general solution (18), we have to assume ψt = 0.

Even though the consistency of any solution must be assured for any value of ωr (includ-
ing the low frequency regime), it may be argued however that the proof is limited to the low
frequency regime and therefore is not completely general.

So, let us present an alternative argument. Let us suppose that A(ω) has a compact sup-
port, i.e. A = 0 for ω > ωc , where ωc is some constant. Then close to the symmetry axis
where ωr � 1 we have (see [44, 45])

H
(1)

0 (ωr) ≈ −2i

π
ln

2

ωr
(25)

and

H
(1)

1 (ωr) ≈ −2i

π

�(1)

ωr
. (26)

Feeding back (25) and (26) into (8) it follows at once that condition Hαβ = 0 implies
ψt = 0.

Thus, we may say that all PES are necessarily static. In agreement with the well known
fact that all static solutions are purely electric.

5 The Geodesics

The geodesic equations may be obtained from the Lagrangian

L = 1

2
gμν

dxμ

ds

dxν

ds
(27)

then the Euler–Lagrange equations

d

ds

(
∂L
∂ẋα

)
− ∂L

∂xα
= 0 (28)

for the metric (1) (dots denote derivatives with respect to s) become

e2(γ−ψ)[(γt − ψt)(ṫ
2 + ṙ2) + 2(γr − ψr)ṫ ṙ + ẗ]

+ e2ψψt ż
2 − e−2ψr2ψt φ̇

2 = 0, (29)

e2(γ−ψ)[2ṫ ṙ(γt − ψt) + (ṫ2 + ṙ2)(γr − ψr) + r̈]
− e2ψψr ż

2 + e−2ψ(r2ψr − r)φ̇2 = 0, (30)

z̈ + 2żṫψt + 2żṙψr = 0, (31)

φ̈ + 2φ̇
ṙ

r
− 2ṙ φ̇ψr − 2ṫ φ̇ψt = 0 (32)
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furthermore from (1) we obtain

−ε = −e2γ−2ψ(ṫ2 − ṙ2) + e2ψ ż2 + r2e−2ψφ̇2 (33)

where ε = 0,1 or −1 if the geodesics are, respectively, null, timelike, or space-like.
Observe that (32) may be write as

d

ds

(
r2e−2ψ dφ

ds

)
= 0, (34)

implying that L = r2e−2ψ dφ

ds
is a constant of motion.

5.1 Circular Geodesics

Now we restrict ourselves to the case of circular geodesics, implying

ṙ = ż = 0. (35)

Then using (35) in (29–33) we obtain for the angular velocity

ω = φ̇

ṫ
, (36)

ω2 = −e2γ (γr − ψr)

r2ψr − r
(37)

or using the field equation (4)

ω2 = e2γ ψ2
t

1 − rψr

− e2γ ψr

r
. (38)

From the definition for tangential velocity

V μ = (−g00)
−1/2Uμ (39)

where

Uμ = (δμ
α + uμuα)

dxα

dt
(40)

and uμ is given by (5), we obtain

V μ = e−(γ−ψ)(0,0,0,ω) (41)

thus

V μVμ = e−2γ r2ω2 (42)

which, using (38) can be written as

V μVμ = (rψt )
2

(1 − rψr)
− rψr . (43)



Int J Theor Phys (2008) 47: 380–392 387

Next, substituting (34) into (33) and using (31) we obtain for circular orbits

L2 = −εr3e−2ψ × rψ,t
2 + rψ,r

2 − ψ,r

r2ψ,t
2 + r2ψ,r

2 − 1
. (44)

The above equation is a necessary condition for the existence of the circular orbit. Since
the left hand side of the above equation is constant, the right hand side should be independent
on the time t too. This specific constraint should be satisfied in order to assure the existence
of circular geodesics in any E-R spacetime.

This is indeed the case, for the two examples examined here. Thus, in the case of the
pulse (in a static background), very far from the front (t 
 r) we shall obtain (see below)

L2 ≈ L2
LC + O

(
r

t

)
(45)

where LLC correspond to the static (Levi-Civita) solution. Thus, whenever we can neglect
terms of the order O(r

t
) and higher, we can safely assume that circular gedodesics do exist.

In the case of the Kramer spacetime (in a static background), we shall consider only the
time average of the corresponding variables, in which case is obvious that the requirement
above on L is also satisfied.

5.2 Static Case

This case is represented by the well known Levi-Civita solution [46–48]

ψLC = α − β ln r, α,β constants (46)

and

γLC = β2 ln r. (47)

Using (46) into (38) and (43) we obtain ω2 and V μVμ for this case

ω2 = βr2(β2−1), (48)

V μVμ = β. (49)

5.3 A Pulse Solution in a Static Background

Let us now consider a cylindrical source which is static for a period of time until it starts
contracting and emits a sharp pulse of radiation traveling outward from the axis. Then, the
function ψ can be written as [12, 40]

ψ = 1

2π

∫ t−r

−∞

f (t ′)dt ′

[(t − t ′)2 − r2]1/2
+ ψLC. (50)

In (50) ψLC represents the Levi-Civita static solution (46), and f (t) is a function of time
representing the strength of the source of the wave and it is assumed to be of the form

f (t) = f0δ(t), (51)
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where f0 is a constant and δ(t) is the Dirac delta function. It can be shown that (50) satisfies
the wave equation (2). Then we get

ψ = ψLC, t < r; (52)

ψ = f0

2π(t2 − r2)1/2
+ ψLC, t > r, (53)

from the above, (45) can be easily deduced.
The function ψ , as well as its derivatives, is regular everywhere except at the wave front

determined by the surface t = r , followed by a tail decreasing with t .
From (53) and Einstein’s equations, we obtain

γ (r, t) = β2 ln r +
(

f0

π

)2
r2

8(t2 − r2)2
− f0

π

β

(t2 − r2)1/2
. (54)

Using (53) into (38) and (43) we obtain

ω2 = e2γ

[
β

r2
− f0

2π

1

(t2 − r2)3/2

+
(

f0

π

)2
t2

4(t2 − r2)3

(
1 + β − f0

2π

r2

(t2 − r2)3/2

)−1]
(55)

with γ given by (54).
In the limit t 
 r , neglecting terms of order O(r

t
) and higher we obtain for ω2

ω2 = r2(β2−1)βe−2βf0/πt = ω2
LCe−2βf0/πt . (56)

From the above, it follows that the angular velocity is smaller than in the static case.
Finally, it is worth noticing that just behind the front, in the limit t � r , the leading

term in (14) vanishes identically, supporting the link between gravitational radiation and the
vanishing of Q and I [27].

5.4 The Kramer Solution in a Static Background

Let us now consider the Kramer solution [41] in a static background [43], thus we have.

ψ = −β ln r + CJ0(r) cos t,

γ = β2 ln r + 1

2
C2r{r[J 2

0 (r) + J 2
1 (r)] − 2J0(r)J1(r) cos2 t}

−2CβJ0(r) cos t

(57)

then from (38) and (57) we obtain

ω2 = r2β2
exp[Cr2{r(J 2

0 (r) + J 2
1 (r)) − 2J0(r)J1(r) cos2 t}

− 4CβJ0(r) cos t]
[

β

r2
+ CJ1(r) cos t

r
+ C2J 2

0 (r) sin2 t

1 + β + CrJ1(r) cos t

]
(58)
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and from (43) and (57)

V μVμ = β + CrJ1 cos t + r2C2J 2
0 (r) sin2 t

1 + β + CrJ1(r) cos t
. (59)

The time average for (59) turns out to be:

〈V μVμ〉 = β + (1 + β)
J 2

0 (r)

J 2
1 (r)

[
1 −

(
1 − r2C2J 2

1 (r)

(1 + β)2

)1/2]
. (60)

The second term in the right hand side of (60) being positive, it is clear that this time
average is larger than the corresponding value in the static case.

6 Super-Poynting and Lagrangian Poynting Vectors in the Einstein–Rosen Spacetime

The super-Poynting vector as defined in [42] is given by

Pα = εαβγ δE
β
ρ Hγρuδ (61)

giving

P2 = P3 = 0 (62)

and

P1 = H23e
ψ−γ

√−g

r2

(
E33

e2ψ

r2
− e−2ψE22

)
(63)

or, using (8–11)

P1 = e3(ψ−γ )

[
ψrr(−6ψrψt + 2rψ3

t + 6rψtψ
2
r ) − 2ψrrψtr

+ ψtr

(
−3ψ2

t − 3ψ2
r − ψr

r
+ 6rψrψ

2
t + 2rψ3

r

)
− 8ψ3

t ψr

+ 3rψ5
t + 30rψ3

t ψ2
r − 6ψ3

r ψt − 3ψ2
r ψt

r
+ 15rψ4

r ψt

− 6r2ψrψ
5
t − 20r2ψ3

t ψ3
r − 6r2ψ5

r ψt

]
. (64)

An alternative expression to evaluate the flux of gravitational energy is given in [43].
This Poynting vector, named “Lagrangian” by Stephani, yields for the radial component of
the energy flux:

S1 = −2rψrψt . (65)

It can be checked without difficulty that (65) is essentially equivalent to the expressions
obtained from the Landau–Lifshitz [49] and Tolman [50] energy-momentum complex, when
calculated in Cartesian coordinates (see equations (5), (10) and (14) in [16]).

For the pulse-type solution, it follows from (53)

S1 = f0t

π(t2 − r2)3/2

[
f0r

2

2π(t2 − r2)3/2
− β

]
(66)
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which in the limit t 
 r (far behind the pulse) becomes

S1 ≈ −f0β

πt2
(67)

where we have neglected terms of order O(r
t
) and higher. This is clearly a negative quantity.

However, just behind the pulse (t ≈ r, t > r), the flux is positive (directed outward) if
only

β <
f0r

2

2π(t2 − r2)3/2
. (68)

Next, taking the limit t 
 r in the radial component of the super-Poynting vector we get

P 1 ≈ e3(ψ−γ )

(
− 3f0

2πt2r3

)
(β2 + 4β3 + 5β4 + 2β5) (69)

where we have neglected terms of order O(r
t
) and higher. This is also a negative quantity.

On the other hand, in the limit t ≈ r(t > r) (just behind the pulse) we obtain

P 1 ≈ e3(ψ−γ )f 5
0 t5

2π5(t2 − r2)15/2

[
f0t

2

π(t2 − r2)3/2
− 7β

2

]
(70)

which is positive if

β <
2f0r

2

7π(t2 − r2)3/2
. (71)

Therefore it is apparent from the above and (45), that circular geodesics in the pulse-type
solution, exist only when the radial flux of energy (as measured by either the super-Poynting
or the “Lagrangian” vector) is directed inward.

Unfortunately we were unable to calculate the time average of (64) for the Kramer so-
lution, since the resulting integrals cannot be expressed in terms of elementary functions.
From a very rough numerical estimate it seems however, that such average is not vanishing.

In the next section we shall present a discussion on the results obtained so far.

7 Discussion

We have seen that E-R waves produce a non-vanishing magnetic Weyl tensor. This fact
together with the vanishing of the vorticity for the congruence of observers at rest in (1)
reinforces the link between gravitational radiation and the magnetic part of Weyl tensor.
We have seen further, that no purely magnetic E-R waves exist, as expected for a purely
magnetic vacua, with a non-rotating congruence. Also, it was shown that purely electric
solutions of this type are necessarily static. Proving thereby that a E-R spacetime is a PES if
and only if it is static.

Next we have written down the geodesic equations and exhibited the influence of the
gravitational wave on the circular motion of a test particle, by comparing with the static
case.

In the first example (pulse-type solution) the angular velocity is smaller than in the static
case, this difference decreases asymptotically as the system gets back to the static situation.
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The physical interpretation of this result is straightforward: we have an initially static sys-
tem, whose mass per unit of length is related to β [48], next the source emits a wave front
traveling outwards, carrying out energy.

This explains why the angular velocity of the particle is smaller than in the static case.
After that, the spacetime behind the front tends asymptotically to a static situation with the
same β as initially. This explains why the exponent in (56) decreases with time. On the other
hand it should be clear that in order to restore the static situation with the same initial β the
system should absorb some energy, in order to compensate for the energy which has been
radiated away.

This is indeed the picture which follows from the expressions for the radial component
of the super-Poynting and the Stephani vectors. Although it is true that just behind the front,
the energy flux is directed outward, it should be stressed that there are not circular geodesics
there. These are allowed far from the front where terms of the order of O(r

t
) and higher can

be neglected.
In the case of the Kramer solution (in a static background), the time average of the tan-

gential velocity of the particle is greater than in the static case. This suggests an increasing
in the active gravitational mass of the source as compared with the static case. Such an effect
might be interpreted in two different ways.

On the one hand, Kramer interprets his solution as describing a gravitational wave propa-
gating in the z-direction. Then the energy of this wave could account for the increasing of the
active gravitational mass of the source. Observe that the time average of the radial compo-
nent of the Stephani vector vanishes in this case, which is consistent with the interpretation
above.

On the other hand, it could be that, as in the pulse case, there is an incoming flow of
energy which is responsible for the increasing of the total energy of the source. If this is so,
then at least the time average of the radial component of the super-Poynting vector should
be negative.

Unfortunately the expression is so complicated that we were unable to find such average,
even with the help of a computer. However, if this last interpretation turns out to be correct,
then it is clear that the super-Poynting vector would be more suitable for describing the flow
of gravitational energy than the “Lagrangian” Poynting vector.

Finally, and just as a curiosity, it is worth mentioning that in classical electrodynamics,
the Poynting vector for the field of a current along an infinite wire (with non-vanishing
resistance), describes a flux of electromagnetic energy directed radially into the wire [51].

In this example, Feynman dismisses the significance of such an effect by arguing that it
is deprived of any physical relevance.

In our case however, the presence of a radial, inwardly directed flux of gravitational
energy (at least in the example of the pulse solution), is necessary in order to restore the
energy carried away by the pulse, and, at the same time, to explain the time evolution pattern
of an “observable” quantity such as the angular velocity of a test particle in a circular motion
around the source.
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